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ABSTRACT

Suppose that shocks hit a device in accordance w&gh a nonhomogeneous

n v
Poissoanrocess with intensity function A(t) . The iig shock causes

a damage X The xi are assumed to be independent and identically
4

distributed positive random variables, and are also assumed independent

of the counting process of shocks. Let D(x s +e+s X ) denote the

Sul - nSul

total damage when n shocks having damages sy x,n have occurred.
Sub f—” . Sub
It has previously been shown that the first time that D(é) exceeds

a critical threshold value is an increasing, failure rate average random
[anbda

variable whenever @) A(t) = X and ,(;Li} D(x) = Z :l) H&eneeadlthis
' (
e entleel "

result’to the case where 3E¥A(s)ds/t) is nondecreasing in t and D(x)

”
tnleg, o P {r g t - o
¢

is a symmetric, nondecreasing function. ‘The extension is obtained by

making use of a recent closure result for increasing failure rate average

stochastic processes.
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GENERALIZED POISSON SHOCK MODELS
by

Sheldon M. Ross

1. MODEL AND RESULT

We consider a unit subject to shocks which occur in accordance
with a nonhomogeneous Poisson process with intensity function A(t) ,
t >0 . We suppose that the ith shock has a random damage Xi

associated with it. The X i >1, are assumed to be independent

i ’
positive random variables each having distribution F . They are also
assumed to be independent of the counting process of shocks. We suppose
that there is a function D such that if n shocks having values

Xps eees X have occurred by time ¢t then

1 1if the unit has failed by ¢t

D(X,y coey % ,0) =
* n 0 otherwise.

Letting T denote the time the unit fails, we have the following theorem.

Theorem 1:

If

(1) T < » with probability 1,
(11) S A(s)ds/t 1is nondecreasing in t ,
0

(111) D(xl, elvig xn,g) = D(xi ¥ ey xin,g) whenever (11, ey in)

1
is a permutation of 1,2, ..., n ,
(iv) D(xl, cees Xy vos) K D(yl, cees Yoo ...) whenever

0 < Xy & y1 s 131,

B L




then T has an increasing failure rate average distribution.

Before proving the above theorem we need some preliminaries.
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2. PRELIMINARIES

We start with some definitions.

Definitions:

(i) The nonnegative continuous random variable X having failure
rate function r(t) = g%-P{X < t}/P{X > t} 1is said to have

an increasing failure rate average distribution if

t
J r(s)ds/t is nondecreasing in t .
0

(i1) The real valued stochastic process {X(t) , t > 0} is said
to be an increasing failure rate average stochastic process
if Ta has an increasing failure rate average distribution

for all a , where T, = inf {t : X(t) > a} .

For an example of an increasing failure rate average stochastic

process let {N(t) , t > 0} be a nonhomogeneous Poisson process with
t

intensity function A(t) where J A(s)ds/t is assumed to be nondecreasing
0

in t . Further suppose that there is a value xi associated with the
ith event. The Xi , 1 >1 , are assumed to be independent random variables
each having the same distribution H , and they are also assumed to be
independent of {N(t) , t > 0} . Define X(t) by
Sivh ; max (Xl, Yoy xN(t)) if N(t) > 1

0 if N(t) =0 .

Then it is easy to see that the failure rate function for Ta = inf {t :X(t) >a}

is given by




r(t) = A(t)(1 - H(a))

and so X(t) 1is an increasing failure rate average process. We call
it a "record process with value distribution H and intensity function
ale) . £ > 0%

The following theorem was proven by Ross in [2].

Theorem 2:

If {Xi(t) , t>0},1i=1, ..., m are independent nondecreasing
increasing failure rate average stochastic processes and if ¢ is a
nondecreasing function then {¢(X1(t), ailalats Xm(t)) , t >0} 1is also
an increasing failure rate average process.

We are now ready for the

Proof of Theorem 1l:

Let m be large and consider m independent record processes
each having value distribution F and intensity function A(t)/m -
call them {Xi(t)} ,1=1, ..., m . Now the shock model under considera-
tion can be generated from these record processes by saying that a shock
occurs whenever an event (from any of the m record processes) occurs
and by letting its damage be the value associated with the Poisson event.
Let N denote the number of shocks it takes until the component fails.

Now if we define ¢ by

¢(x1, vy xm) = D(xl, ey xm,g)

then it follows from Theorem 2 that the first time D(x,(t), ..., xm(t),g)

equals 1 has an increasing failure rate average distribution. But as long

A 5 . Ny —
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4s the first N shocks all come from different record processes this
will be exactly the time the unit fails. Hence as the probability

that all shocks until unit failure come from different record processes
can be made arbitrarily close to 1 by letting m be large, the result
follows by letting m go to infinity since the limit of increasing

failure rate average random variables is also increasing failure rate

average. | |

Remarks:

(i) The special case where A(t) = A and

n
i %€ ] x; > ¢
D(Xys «oey X ,0) = 1

0 otherwise

was previously considered in [1].
(1i1) It is easy to construct counterexamples to Theorem 1 if the

symmetry condition on 1) is dropped.
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